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Components of deterministic optimization practice

modeling 

  - objective function 

  - constraints 

 

algorithms
 

data
 

solutions (with guarantees) 
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Components of stochastic optimization practice

modeling 

  - objective and constraint functions 

  - decision stages, uncertainty model  
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Components of stochastic optimization practice

modeling 

  - objective and constraint functions 

  - decision stages, uncertainty model  

algorithms 

data fusion 

- stochastic processes 

- scenarios 

- probability densities 

solutions (with guarantees) 

recommended decisions 
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Example: 100 observations of demand
Possibilities: Use the 100 scenarios; fit to assumed parametric
form; Bayesian update; nonparametric estimation



Example: 100 observations of demand
Possibilities: Use the 100 scenarios; fit to assumed parametric
form; Bayesian update; nonparametric estimation
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...but with only 5 observations
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Almost always soft information available



Use stochastic programming!
Same 5 points, but with epi-splines and soft info. (nonnegativity,
continuous differentiable, and decreasing)
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Two roles for stochastic programming
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Independent value in data fusion and uncertainty quant.

Engineering, biological, physical systems

◮ Input: random V (“known” distribution)

◮ System function G ; implicitly defined e.g. by simulation

◮ Output: random variable

X = G (V )



Independent value in data fusion and uncertainty quant.

Engineering, biological, physical systems

◮ Input: random V (“known” distribution)

◮ System function G ; implicitly defined e.g. by simulation

◮ Output: random variable

X = G (V )

Given observations (data) x1 = G (v1), ..., xν = G (vν), we seek a
description of X :

◮ mean, standard deviation

◮ quantile, superquantile

◮ distribution, density (pdf)

Main challenge: few data points; little relevant data
But soft information might be available



Example: M/M/1; 50% of customers delayed for fixed time
X = customer time-in-service; 100 observations
Soft info: lsc, X ≥ 0, pointwise Fisher, unimodal upper tail
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Outline

◮ Density estimation as a stochastic program

◮ Epi-splines: pliable approximation tools

◮ Consistency and asymptotics

◮ Fusion of hard and soft information

◮ Numerical examples



Formulation of density estimation problem

Kullback-Leibler divergence from density h to density g on IR

dKL(h||g) =

∫ ∞

−∞
h(x) log

h(x)

g(x)
dx

Facts:
dKL(h||g) ≥ 0 for all densities h, g

dKL(h||g) = 0 ⇐⇒ h(x) = g(x) (Lebesgue) almost every x ∈ IR



Formulation (cont.)

Consequently, for density h0 ∈ H:
If

h̃ ∈ argmin
h

dKL(h
0||h)

s.t.

∫ ∞

−∞
h(x)dx = 1

h ≥ 0

h ∈ H

then
h̃ = h0 a.e.



Formulation (cont.)

Let X 0 be a random variable with density h0

Then,

dKL(h
0||h) =

∫ ∞

−∞
h0(x) log

h0(x)

h(x)
dx = E{log h0(X 0)}−E{log h(X 0)}



Formulation (cont.)

Let X 0 be a random variable with density h0

Then,

dKL(h
0||h) =

∫ ∞

−∞
h0(x) log

h0(x)

h(x)
dx = E{log h0(X 0)}−E{log h(X 0)}

So minimizing dKL(h
0||h) is equivalent to

h̃ ∈ argmax
h

E{log h(X 0)}

s.t.

∫ ∞

−∞
h(x)dx = 1

h ≥ 0, h ∈ H

Of course, expectation is with respect to the true distribution



Formulation (cont.)

Data (sample) X 1,X 2, ...,X ν available

hν ∈ argmax
h

1

ν

ν
∑

i=1

log h(X i) = log

(

ν
∏

i=1

h(X i )

)1/ν

s.t.

∫ ∞

−∞
h(x)dx = 1

h ≥ 0, h ∈ H



Formulation (cont.)

Data (sample) X 1,X 2, ...,X ν available

hν ∈ argmax
h

1

ν

ν
∑

i=1

log h(X i) = log

(

ν
∏

i=1

h(X i )

)1/ν

s.t.

∫ ∞

−∞
h(x)dx = 1

h ≥ 0, h ∈ H

approximates

h̃ ∈ argmax
h

E{log h(X 0)}

s.t.

∫ ∞

−∞
h(x)dx = 1

h ≥ 0, h ∈ H

Approximation is a max log-likelihood problem



Incorporating soft information

hν ∈ argmax
h

1

ν

ν
∑

i=1

log h(X i) = log

(

ν
∏

i=1

h(X i )

)1/ν

s.t.

∫ ∞

−∞
h(x)dx = 1

h ≥ 0, h ∈ Hν ⊂ H

where Hν includes essentially any soft information about h0:

◮ support bounds

◮ density continuity, smoothness

◮ density shape (unimodal, decreasing, etc.)

◮ moments

◮ proximity to known density

◮ system knowledge (convex G , gradient of G )



Outline

◮ Density estimation as a stochastic program

◮ Epi-splines: pliable approximation tools

◮ Consistency and asymptotics

◮ Fusion of hard and soft information

◮ Numerical examples



Challenge: infinite-dimensional problems

hν ∈ argmax
h

1

ν

ν
∑

i=1

log h(X i) = log

(

ν
∏

i=1

h(X i )

)1/ν

s.t.

∫ ∞

−∞
h(x)dx = 1

h ≥ 0, h ∈ Hν ⊂ H

Need approximation of H by set of flexible functions given by finite
number of parameters



Exponential epi-spline estimator

Given sample X 1, ...,X ν , the exponential epi-spline estimator of
the true density is

hν = e−sν ,

where sν is an epi-spline



Epi-splines: piecewise polynomial functions

s(x) 

m0 m1 m2

x

m
N

m3 m4 m5
…



Exponential epi-spline estimator

Given sample X 1, ...,X ν , the exponential epi-spline estimator of
the true density is

hν = e−sν ,

where sν is an epi-spline

Main features:

◮ finite number of parameters; powerful optimization technology
available

◮ approximates to arbitrary accuracy essentially any function

◮ easily includes soft information

◮ substantially more flexible and pliable than ‘classical’ splines

◮ nonnegativity achieved automatically



Epi-splines

◮ Number of partitions N

◮ Mesh m = {mk}
N
k=0, where mk−1 < mk , k = 1, 2, ...,N

◮ Estimation on [m0,mN ]

◮ Order p



Epi-splines

◮ Number of partitions N

◮ Mesh m = {mk}
N
k=0, where mk−1 < mk , k = 1, 2, ...,N

◮ Estimation on [m0,mN ]

◮ Order p

Definition
e-splp(m)= family of (basic) epi-splines of order p, with mesh
m = {mk}

N
k=0, consists of:

◮ functions s : [m0,mN ] → IR

◮ that are polynomials of degree p in each segment (mk−1,mk),
k = 1, 2, ...,N, and

◮ that are finite valued at m0, m1, ..., mN



Representation of epi-spline

s(x) 
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Representation of epi-spline

Every s ∈ e-splp(m), with m = {mk}
N
k=0, is uniquely represented

by

r = (s0, s1, ..., sN , a1, a2, ..., aN), sk ∈ IR , ak ∈ IRp+1,

such that
s(x) = 〈c(x), r〉, x ∈ [m0,mN ],

where

c(x) =











(0, ..., 0, 1, x −mk−1, ..., (x −mk−1)
p , 0, ..., 0)

if x ∈ (mk−1,mk), k = 1, ...,N

(0, ..., 0, 1, 0, ..., 0) if x = mk , k = 0, 1, ...,N.



Approximation of functions by epi-splines

lsc-fcns([l , u]) =
lower semicontinuous functions (lsc) on [l , u] not 6≡ ∞

Adopt metric topology induced by the epi-distance



Approximation of functions by epi-splines

lsc-fcns([l , u]) =
lower semicontinuous functions (lsc) on [l , u] not 6≡ ∞

Adopt metric topology induced by the epi-distance

Need to allow for

◮ jumps (discontinuous densities)

◮ infinity (due to e−s)

◮ pointwise constraints (soft information)

◮ mixtures with probability mass functions

◮ subsequent maximization of densities (find modes)



Epi-distance

point-to-set distance = d(x ,S) = infy∈S ‖x − y‖ for S ⊂ IR2



Epi-distance

point-to-set distance = d(x ,S) = infy∈S ‖x − y‖ for S ⊂ IR2

epi-graph of f = epi f = {(x , β) ∈ IR2 | f (x) ≤ β}



Epi-distance

point-to-set distance = d(x ,S) = infy∈S ‖x − y‖ for S ⊂ IR2

epi-graph of f = epi f = {(x , β) ∈ IR2 | f (x) ≤ β}

Epi-distance = dl(f , g) =

∫ ∞

0
dlρ(f , g)e

−ρdρ

where for ρ ≥ 0

dlρ(f , g) = max
‖x‖≤ρ

|d(x , epi f )− d(x , epi g)|



Epi-distance (cont.)

dlρ(f , g) = max‖x‖≤ρ |d(x , epi f )− d(x , epi g)|

ρ

dlρ(f, g)

gf



Epi-distance (cont.)

dlρ(f , g) = max‖x‖≤ρ |d(x , epi f )− d(x , epi g)|

f

g dlρ(f, g)

ρ d(x, epi f)

d(x, epi g)

x



Characterization of convergence

For any ρ̄ ≥ 0:

dl(f ν , f ) → 0 ⇐⇒ dlρ(f
ν , f ) → 0 for all ρ ≥ ρ̄

(lsc-fcns([l , u]), dl) complete separable metric space



Convergence of exponential epi-splines

exponential epi-splines = x-splp(m) = {e−s | s ∈ e-splp(m)}
hypo-distance dlhypo (f , g) = dl(−f ,−g)

hν , h0 ∈ x-splp(m), hν = e−sν = e−〈c(·),rν 〉, h0 = e−s0 = e−〈c(·),r0〉

Then, the following hold:

rν → r0 ⇐⇒ hν → h0 uniformly on [m0,mN ]

=⇒ dlhypo (h
ν , h0) → 0 ⇐⇒ dl(sν , s0) → 0

Moreover, if hν , h0 are usc, then also

hν → h0 uniformly on [m0,mN ] ⇐= dlhypo (h
ν , h0) → 0



Properties of (exponential) epi-splines

If {mν}∞ν=1 are refining meshes, then

◮ lsc {e-splp(mν)}∞ν=1 dense in lsc-fcns([l , u])

◮ usc {x-splp(mν)}∞ν=1 dense in {e−s | s ∈ lsc-fcns([l , u])}



Examples

◮ most densities approximated to arbitrary accuracy
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m



Examples

◮ most densities approximated to arbitrary accuracy

◮ normal density represented by e-spl2(m) on [m0,mN ] for any
m

◮ exponential density represented by e-spl1(m) on [m0,mN ] for
any choice of m with m0 = 0



Examples

◮ most densities approximated to arbitrary accuracy

◮ normal density represented by e-spl2(m) on [m0,mN ] for any
m

◮ exponential density represented by e-spl1(m) on [m0,mN ] for
any choice of m with m0 = 0

◮ lognormal and Pareto also exactly represented after
transformation



Recall: maximize log-likelihood

hν ∈ argmax
h

1

ν

ν
∑

i=1

log h(X i)

s.t.

∫ ∞

−∞
h(x)dx = 1

h ≥ 0

h ∈ Hν ⊂ H

Now h = e−〈c(·),r〉 and optimize over r ∈ IR (p+2)N+1 instead



Resulting optimization problem

min
r

1

ν

ν
∑

i=1

〈c(X i ), r〉

s.t.

∫ mN

m0

e−〈c(x),r〉dx = 1

r ∈ Rν =
{

r ∈ IR (p+2)N+1
∣

∣

∣
e−〈c(·),r〉 ∈ Hν

}

Rν often convex; ≤ often replaces =

=⇒ convex problem

Estimator unique under additional assumptions



Outline

◮ Density estimation as a stochastic program

◮ Epi-splines: pliable approximation tools

◮ Consistency and asymptotics

◮ Fusion of hard and soft information

◮ Numerical examples



Consistency

Kullback-Leibler projection of density h on e-splp(m) is the set

Pp,m(h) = argmin
s∈e-splp(m)

dKL(h||e
−s ) s.t.

∫ mN

m0

e−s(x)dx = 1

PS
p,m(h) = KL-projection relative to S ⊂ e-splp(m)



Consistency

Kullback-Leibler projection of density h on e-splp(m) is the set

Pp,m(h) = argmin
s∈e-splp(m)

dKL(h||e
−s ) s.t.

∫ mN

m0

e−s(x)dx = 1

PS
p,m(h) = KL-projection relative to S ⊂ e-splp(m)

Pν
p,m : sν ∈ argmin

s∈Sν

1

ν

ν
∑

i=1

s(X i) s.t.

∫ mN

m0

e−s(x)dx = 1

Sν =
{

s ∈ e-splp(m)
∣

∣ e−s ∈ Hν
}



Consistency (cont.)

True density h0 = e−s0 , with s0 = 〈c(·), r0〉 ∈ e-splp(m)
Independent sample from h0

{sν}∞ν=1 sequence of optimal solutions of Pν
p,m, with {rν}∞ν=1



Consistency (cont.)

True density h0 = e−s0 , with s0 = 〈c(·), r0〉 ∈ e-splp(m)
Independent sample from h0

{sν}∞ν=1 sequence of optimal solutions of Pν
p,m, with {rν}∞ν=1

If limRν exists almost surely and is deterministic, then every
accumulation point r∞ of {rν}∞ν=1 satisfies

〈c(·), r∞〉 ∈ PS∞

p,m(h
0) almost surely,

where S∞ = {s ∈ e-splp(m) | s = 〈c(·), r〉, r ∈ limRν}



Consistency (cont.)

Regardless of whether Rν has a limit, if there exists {r̂ν}∞ν=1,
r̂ν ∈ Rν , such that r̂ν → r0 a.s., then a.s.:

(i) 〈c(·), r∞〉 ∈ Pp,m(h
0)

(ii) r∞ess = r0ess (‘essential’ part: r
0 = (r0mesh, r

0
ess))

(iii) If rν →K r∞ along a subsequence K , then

〈c(·), rν〉 →K s0 and e−〈c(·),rν 〉 →K h0

uniformly on [m0,mN ], possibly except on m



Proof of consistency

◮ Let X 0 have density h0.

◮ Since X 0 ∈ [m0,mN ] almost surely, c(X 0) is a random vector
with finite moments

◮ Law of large number (1/ν)
∑ν

i=1 c(X
i ) → E{c(X 0)} a.s.

◮ Epi-convergence of (effective) objective functions follow



Stability of Kullback-Leibler projection

Densities hν , h0 on [l , u] satisfy dlhypo (h
ν , h0) → 0

If rν is such that

〈c(·), rν〉 ∈ Pp,m(h
ν) for m = {mk}

N
k=0,m0 = l ,mN = u,

then every accumulation point of {rν}∞ν=1 is the epi-spline
parameter of some s0 ∈ Pp,m(h

0)



Connections between modes of convergence

Densities hν , h0 ∈ x-splp(m), with hν = e−〈c(·),rν 〉, h0 = e−〈c(·),r0〉

Then,

rν → r0 =⇒ dKL(h
0||hν) → 0 ⇐⇒ dKL(h

ν ||h0) → 0 =⇒ rνess → r0ess



Asymptotic normality

True density h0 = e−s0 ∈ x-splp(m), s0 = 〈c(·), r0〉
r0 in the interior of lim inf Rν a.s.
Independent sample from h0

{sν}∞ν=1 optimal solutions of Pν
p,m, with {rν}∞ν=1, h

ν = e−〈c(·),rν 〉



Asymptotic normality

True density h0 = e−s0 ∈ x-splp(m), s0 = 〈c(·), r0〉
r0 in the interior of lim inf Rν a.s.
Independent sample from h0

{sν}∞ν=1 optimal solutions of Pν
p,m, with {rν}∞ν=1, h

ν = e−〈c(·),rν 〉

Then:
ν1/2(rνess − r0ess) →

d N (0,Σ(r0ess))

ν1/2(hν(x)−h0(x)) →d N
(

0,Σx(r
0
ess

)

, x ∈ (mk−1,mk), k = 1, ...,N

Moment estimator µν
j =

∫ mN

m0
x je−〈c(x),rν 〉dx satisfies

ν1/2(µν
j − µ0

j ) →
d N (0, 〈w ,Σ(r0ess)w〉)



Outline

◮ Density estimation as a stochastic program

◮ Epi-splines: pliable approximation tools

◮ Consistency and asymptotics

◮ Fusion of hard and soft information

◮ Numerical examples



Formulation of soft information
Easy to ensure bounds on domain, continuity, smoothness,
monotonicity

s(x) 

m0 m1 m2

x

m
N

m3 m4 m5
…



Continuity

Epi-spline parameter

r =

(s0, ..., sN , a1,0, a1,1, ..., a1,p , a2,0, a2,1, ..., a2,p , ...., aN,0, aN,1, ..., aN,p)

sk−1 = ak,0, sk =

p
∑

i=0

ak,i (mk −mk−1)
i , k = 1, 2, ...,N



Kullback-Leibler constraint

Recall: Kullback-Leibler divergence from density h to density g

dKL(h||g) =

∫ ∞

−∞
h(x) log

h(x)

g(x)
dx

If s ∈ e-splp(m) and r its epi-spline parameter, then

dKL(h||e
−s) =

〈
∫ mN

m0

c(x)h(x)dx , r

〉

+

∫ ∞

−∞
(log h(x))h(x)dx ,

So κ1 ≤ dKL(h||e
−s) ≤ κ2 are linear constraints



Outline

◮ Density estimation as a stochastic program

◮ Epi-splines: pliable approximation tools

◮ Consistency and asymptotics

◮ Fusion of hard and soft information

◮ Numerical examples



Example: 2-dof dynamical system

k
1 k

2 

m
1 

m
2 

p
o
sin vt

 

m1ü1(t) + (k1 + k2)u1(t)− k2u2(t) = po sin vt

m2ü2(t)− k2u1(t) + k2u2(t) = 0

For choices of ki ,mi , steady-state displacement at node 2:

u2(t) = u2o sin vt with amplitude u2o =
1

(1− v2)(1 − v2/4)



Example: Density of response amplitude

V mix of beta densities gives density for amplitude X :
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Example: Density of response amplitude (cont.)

Sample size 100; continuously differentiable; “unimodal” tails
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Gradient information

Gradient information for bijective G : IR → IR

Recall: If X = G (V ), then

hX (x) = hV (G
−1(x))/|G ′(G−1(x))|

Present context without a bijection and data x i = G (v i),G ′(v i):

hν(x i ) = e−〈c(x i ),r〉 ≥
hV (v

i )

|G ′(v i )|

〈c(x i ), r〉 ≤ − log
hV (v

i)

|G ′(v i)|

Value of pdf bounded from below at x i



Back to example

Sample size 20; gradient information
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Example: Uniform mixture density
sample size 1000; lsc
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Example: Uniform mixture density (cont.)
sample size just 100; lsc
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Summary

◮ Density estimation problems as stochastic programs

◮ Exponential epi-splines offer a tractable class of density
estimators

◮ Incorporate soft information by means of constraints

◮ Extensions to response surface, regression curve, multivariate
density estimation, and many other curve fitting problems
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